Search results
Results from the WOW.Com Content Network
For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...
CW complexes satisfy the Whitehead theorem: a map between CW complexes is a homotopy equivalence if and only if it induces an isomorphism on all homotopy groups. A covering space of a CW complex is also a CW complex. [13] The product of two CW complexes can be made into a CW complex.
Two major ways in which this can be done are through fundamental groups, or more generally homotopy theory, and through homology and cohomology groups. The fundamental groups give us basic information about the structure of a topological space, but they are often nonabelian and can be difficult to work with.
A key concept in defining simplicial homology is the notion of an orientation of a simplex. By definition, an orientation of a k-simplex is given by an ordering of the vertices, written as (v 0,...,v k), with the rule that two orderings define the same orientation if and only if they differ by an even permutation.
Two pairs (X 1, A) and (X 2, A) are said to be equivalent, if there is a simple homotopy equivalence between X 1 and X 2 relative to A. The set of such equivalence classes form a group where the addition is given by taking union of X 1 and X 2 with common subspace A. This group is natural isomorphic to the Whitehead group Wh(A) of the CW-complex A.
A two-tailed test applied to the normal distribution. A one-tailed test, showing the p-value as the size of one tail. In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test ...
Each scheme X over k determines two objects in DM called the motive of X, M(X), and the compactly supported motive of X, M c (X); the two are isomorphic if X is proper over k. One basic point of the derived category of motives is that the four types of motivic homology and motivic cohomology all arise as sets of morphisms in this category.
In mathematics, Spanier–Whitehead duality is a duality theory in homotopy theory, based on a geometrical idea that a topological space X may be considered as dual to its complement in the n-sphere, where n is large enough. Its origins lie in Alexander duality theory, in homology theory, concerning complements in manifolds.