Search results
Results from the WOW.Com Content Network
It is a terminal alkyne. The compound is a common terminal alkyne substrate in diverse studies of catalysis. It is a colorless combustible gas. [1] 1-Butyne participates in reactions typical for terminal alkynes, such as alkyne metathesis, [2] hydrogenation, condensation with formaldehyde.
Hydroaluminations of terminal alkynes typically produce terminal alkenylalanes as a result. Selectivity in hydroaluminations of internal alkynes is typically low, unless an electronic bias exists in the substrate (such as a phenyl ring in conjugation with the alkyne).
The Crabbé reaction (or Crabbé allene synthesis, Crabbé–Ma allene synthesis) is an organic reaction that converts a terminal alkyne and aldehyde (or, sometimes, a ketone) into an allene in the presence of a soft Lewis acid catalyst (or stoichiometric promoter) and secondary amine.
In organic chemistry, alkynylation is an addition reaction in which a terminal alkyne (−C≡CH) is added to a carbonyl group (C=O) to form an α-alkynyl alcohol (R 2 C(−OH)−C≡C−R). [1] [2] When the acetylide is formed from acetylene (HC≡CH), the reaction gives an α-ethynyl alcohol. This process is often referred to as ethynylation.
Alkyne metathesis is an organic reaction that entails the redistribution of alkyne chemical bonds. The reaction requires metal catalysts. The reaction requires metal catalysts. Mechanistic studies show that the conversion proceeds via the intermediacy of metal alkylidyne complexes .
The Hay coupling is variant of the Glaser coupling. It relies on the TMEDA complex of copper(I) chloride to activate the terminal alkyne. Oxygen (air) is used in the Hay variant to oxidize catalytic amounts of Cu(I) to Cu(II) throughout the reaction, as opposed to a stoichiometric amount of Cu(II) used in the Eglington variant. [7]
It is a terminal alkyne, in fact the smallest that is liquid at room temperature. The compound is a common terminal alkyne substrate in diverse studies of catalysis. The compound is a common terminal alkyne substrate in diverse studies of catalysis.
These steps will be repeated, essentially moving the alkyne along the alkane chain until a terminal alkyne is achieved. [3] Once a terminal alkyne is achieved, the 3-aminopropylamine anion will attack and remove the terminal proton. However, the process stops there because the carbon-hydrogen bond electrons cannot form an additional pi-bond on ...