Search results
Results from the WOW.Com Content Network
The inverse table inv represents the multiplicative inverse of a digit, that is, the value that satisfies d(j, inv(j)) = 0. The permutation table p applies a permutation to each digit based on its position in the number. This is actually a single permutation (1 5 8 9 4 2 7 0)(3 6) applied iteratively; i.e. p(i+j,n) = p(i, p(j,n)).
The validity of a digit sequence containing a check digit is defined over a quasigroup. A quasigroup table ready for use can be taken from Damm's dissertation (pages 98, 106, 111). [3] It is useful if each main diagonal entry is 0, [1] because it simplifies the check digit calculation.
The final character of a ten-digit International Standard Book Number is a check digit computed so that multiplying each digit by its position in the number (counting from the right) and taking the sum of these products modulo 11 is 0. The digit the farthest to the right (which is multiplied by 1) is the check digit, chosen to make the sum correct.
The check digit is computed as follows: Drop the check digit from the number (if it's already present). This leaves the payload. Start with the payload digits. Moving from right to left, double every second digit, starting from the last digit. If doubling a digit results in a value > 9, subtract 9 from it (or sum its digits).
The simplest checksum algorithm is the so-called longitudinal parity check, which breaks the data into "words" with a fixed number n of bits, and then computes the bitwise exclusive or (XOR) of all those words. The result is appended to the message as an extra word.
In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.
Divisibility by 5 is easily determined by checking the last digit in the number (475), and seeing if it is either 0 or 5. If the last number is either 0 or 5, the entire number is divisible by 5. [2] [3] If the last digit in the number is 0, then the result will be the remaining digits multiplied by 2.
The next number in the sequence (the smallest number of additive persistence 5) is 2 × 10 2×(10 22 − 1)/9 − 1 (that is, 1 followed by 2 222 222 222 222 222 222 222 nines). For any fixed base, the sum of the digits of a number is proportional to its logarithm ; therefore, the additive persistence is proportional to the iterated logarithm .