Search results
Results from the WOW.Com Content Network
An infimum of a set is always and only defined relative to a superset of the set in question. For example, there is no infimum of the positive real numbers inside the positive real numbers (as their own superset), nor any infimum of the positive real numbers inside the complex numbers with positive real part.
It is the greatest element of B and hence the infimum of X. In a dual way, the existence of all infima implies the existence of all suprema. Bounded completeness can also be characterized differently. By an argument similar to the above, one finds that the supremum of a set with upper bounds is the infimum of the set of upper bounds.
A real number x is called an upper bound for S if x ≥ s for all s ∈ S. A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S. The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real ...
In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...
A complete lattice is a lattice in which every subset of elements of L has an infimum and supremum; this generalizes the analogous properties of the real numbers. An order-embedding is a function that maps distinct elements of S to distinct elements of L such that each pair of elements in S has the same ordering in L as they do in S.
Another example of a Boolean algebra that is not complete is the Boolean algebra P(ω) of all sets of natural numbers, quotiented out by the ideal Fin of finite subsets. The resulting object, denoted P(ω)/Fin, consists of all equivalence classes of sets of naturals, where the relevant equivalence relation is that two sets of naturals are ...
In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...
The real numbers can be defined synthetically as an ordered field satisfying some version of the completeness axiom.Different versions of this axiom are all equivalent in the sense that any ordered field that satisfies one form of completeness satisfies all of them, apart from Cauchy completeness and nested intervals theorem, which are strictly weaker in that there are non Archimedean fields ...