Search results
Results from the WOW.Com Content Network
The detection of charged particles within the chamber is possible by the ionizing of gas particles due to the motion of the charged particle. [14] The Fermilab detector CDF II contains a drift chamber called the Central Outer Tracker. [15] The chamber contains argon and ethane gas, and wires separated by 3.56-millimetre gaps. [16]
On one side of the detector is a high-voltage cathode plane, used to establish a drift electric field across the TPC. Although the exact electric potential at which this is set is dependent on the detector geometry, this high-voltage cathode typically produces a drift field of 500 V/cm across the detector. [10]
In particle physics, tracking [1] is the process of reconstructing the trajectory (or track) of electrically charged particles in a particle detector known as a tracker.The particles entering such a tracker leave a precise record of their passage through the device, by interaction with suitably constructed components and materials.
In experimental and applied particle physics, nuclear physics, and nuclear engineering, a particle detector, also known as a radiation detector, is a device used to detect, track, and/or identify ionizing particles, such as those produced by nuclear decay, cosmic radiation, or reactions in a particle accelerator. Detectors can measure the ...
The drift tube (DT) system measures muon positions in the barrel part of the detector. Each 4-cm-wide tube contains a stretched wire within a gas volume. When a muon or any charged particle passes through the volume it knocks electrons off the atoms of the gas. These follow the electric field ending up at the positively charged wire.
The Collider Detector at Fermilab (CDF) experimental collaboration studies high energy particle collisions from the Tevatron, the world's former highest-energy particle accelerator. The goal is to discover the identity and properties of the particles that make up the universe and to understand the forces and interactions between those particles.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Particle identification is the process of using information left by a particle passing through a particle detector to identify the type of particle. Particle identification reduces backgrounds and improves measurement resolutions, and is essential to many analyses at particle detectors.