Search results
Results from the WOW.Com Content Network
Continental drift is a highly supported scientific theory, originating in the early 20th century, that Earth's continents move or drift relative to each other over geologic time. [1] The theory of continental drift has since been validated and incorporated into the science of plate tectonics , which studies the movement of the continents as ...
Palaeogeographical evidence contributed to the development of continental drift theory, and continues to inform current plate tectonic theories, yielding information about the shape and latitudinal location of supercontinents such as Pangaea and ancient oceans such as Panthalassa, thus enabling reconstruction of prehistoric continents and ...
The Vine–Matthews–Morley hypothesis, also known as the Morley–Vine–Matthews hypothesis, was the first key scientific test of the seafloor spreading theory of continental drift and plate tectonics. Its key impact was that it allowed the rates of plate motions at mid-ocean ridges to be computed.
There followed a period of 20 years during which the theory of continental drift developed from being believed by a few to being the cornerstone of modern geology. Beginning in 1947 research provided new evidence about the ocean floor, and in 1960 Bruce C. Heezen published the concept of mid-ocean ridges.
The second piece of evidence in support of continental drift came during the late 1950s and early 60s from data on the bathymetry of the deep ocean floors and the nature of the oceanic crust such as magnetic properties and, more generally, with the development of marine geology [57] which gave evidence for the association of seafloor spreading ...
New research shows that Homo sapiens traveled from Africa to East Asia and toward Australia up to 86,000 years ago.
Distribution of four Permian and Triassic fossil groups used as biogeographic evidence for continental drift, land bridging.. The continent of Gondwana was named by the Austrian scientist Eduard Suess, after the region in central India of the same name, which is derived from Sanskrit for "forest of the Gonds". [6]
Apparent polar wander paths provided the first clear geophysical evidence for continental drift, while marine magnetic anomalies did the same for seafloor spreading. Paleomagnetic data continues to extend the history of plate tectonics back in time, constraining the ancient position and movement of continents and continental fragments ( terranes ).