enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    Real-valued functions encountered in applications tend to be measurable; however, it is not difficult to prove the existence of non-measurable functions. Such proofs rely on the axiom of choice in an essential way, in the sense that Zermelo–Fraenkel set theory without the axiom of choice does not prove the existence of such functions.

  3. Direct integral - Wikipedia

    en.wikipedia.org/wiki/Direct_integral

    The simplest example of a direct integral are the L 2 spaces associated to a (σ-finite) countably additive measure μ on a measurable space X. Somewhat more generally one can consider a separable Hilbert space H and the space of square-integrable H-valued functions (,).

  4. Locally integrable function - Wikipedia

    en.wikipedia.org/wiki/Locally_integrable_function

    The classical definition of a locally integrable function involves only measure theoretic and topological [4] concepts and can be carried over abstract to complex-valued functions on a topological measure space (X, Σ, μ): [5] however, since the most common application of such functions is to distribution theory on Euclidean spaces, [2] all ...

  5. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L 1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis .

  6. Countable Borel relation - Wikipedia

    en.wikipedia.org/wiki/Countable_Borel_Relation

    A main area of study in invariant descriptive set theory is the relative complexity of equivalence relations. An equivalence relation on a set is considered more complex than an equivalence relation on a set if one can "compute using " - formally, if there is a function : which is well behaved in some sense (for example, one often requires that is Borel measurable) such that ,: ().

  7. Vitali convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Vitali_convergence_theorem

    Let (,,) be a measure space, i.e. : [,] is a set function such that () = and is countably-additive. All functions considered in the sequel will be functions :, where = or .We adopt the following definitions according to Bogachev's terminology.

  8. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    The integral of a non-negative general measurable function is then defined as an appropriate supremum of approximations by simple functions, and the integral of a (not necessarily positive) measurable function is the difference of two integrals of non-negative measurable functions. [1]

  9. Convergence in measure - Wikipedia

    en.wikipedia.org/wiki/Convergence_in_measure

    If X = [a,b] ⊆ R and μ is Lebesgue measure, there are sequences (g n) of step functions and (h n) of continuous functions converging globally in measure to f. If f and f n (n ∈ N) are in L p (μ) for some p > 0 and (f n) converges to f in the p-norm, then (f n) converges to f globally in measure. The converse is false.