enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. David Hilbert - Wikipedia

    en.wikipedia.org/wiki/David_Hilbert

    His work was a key aspect of Hermann Weyl and John von Neumann's work on the mathematical equivalence of Werner Heisenberg's matrix mechanics and Erwin Schrödinger's wave equation, and his namesake Hilbert space plays an important part in quantum theory. In 1926, von Neumann showed that, if quantum states were understood as vectors in Hilbert ...

  3. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Hilbert lived for 12 years after Kurt Gödel published his theorem, but does not seem to have written any formal response to Gödel's work. [b] [c] Hilbert's tenth problem does not ask whether there exists an algorithm for deciding the solvability of Diophantine equations, but rather asks for the construction of such an algorithm: "to devise a ...

  4. Hilbert's program - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_program

    Hilbert proposed that the consistency of more complicated systems, such as real analysis, could be proven in terms of simpler systems. Ultimately, the consistency of all of mathematics could be reduced to basic arithmetic. Gödel's incompleteness theorems, published in 1931, showed that Hilbert's program was unattainable for key areas of ...

  5. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  6. Hilbert's thirteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_thirteenth_problem

    Hilbert's thirteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It entails proving whether a solution exists for all 7th-degree equations using algebraic (variant: continuous ) functions of two arguments .

  7. General relativity priority dispute - Wikipedia

    en.wikipedia.org/wiki/General_relativity...

    In their 1997 Science paper, [B 2] Corry, Renn and Stachel quote the above passage and comment that "the arguments by which Einstein is exculpated are rather weak, turning on his slowness in fully grasping Hilbert's mathematics", and so they attempted to find more definitive evidence of the relationship between the work of Hilbert and Einstein ...

  8. Hilbert's nineteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_nineteenth_problem

    David Hilbert presented what is now called his nineteenth problem in his speech at the second International Congress of Mathematicians. [5] In (Hilbert 1900, p. 288) he states that, in his opinion, one of the most remarkable facts of the theory of analytic functions is that there exist classes of partial differential equations which admit only analytic functions as solutions, listing Laplace's ...

  9. Hilbert's twenty-first problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_twenty-first_problem

    This problem is more commonly called the Riemann–Hilbert problem.It led to several bijective correspondences known as 'Riemann–Hilbert correspondences', for flat algebraic connections with regular singularities and more generally regular holonomic D-modules or flat algebraic connections with regular singularities on principal G-bundles, in all dimensions.