Search results
Results from the WOW.Com Content Network
Parity only depends on the number of ones and is therefore a symmetric Boolean function. The n-variable parity function and its negation are the only Boolean functions for which all disjunctive normal forms have the maximal number of 2 n − 1 monomials of length n and all conjunctive normal forms have the maximal number of 2 n − 1 clauses of ...
Zielonka outlined a recursive algorithm that solves parity games. Let = (,,,,) be a parity game, where resp. are the sets of nodes belonging to player 0 resp. 1, = is the set of all nodes, is the total set of edges, and : is the priority assignment function.
In computer science, a binary decision diagram (BDD) or branching program is a data structure that is used to represent a Boolean function. On a more abstract level, BDDs can be considered as a compressed representation of sets or relations .
Self-concordant function; Semi-differentiability; Semilinear map; Set function; List of set identities and relations; Shear mapping; Shekel function; Signomial; Similarity invariance; Soboleva modified hyperbolic tangent; Softmax function; Softplus; Splitting lemma (functions) Squeeze theorem; Steiner's calculus problem; Strongly unimodal ...
Parity learning is a problem in machine learning. An algorithm that solves this problem must find a function ƒ, given some samples (x, ƒ(x)) and the assurance that ƒ computes the parity of bits at some fixed locations. The samples are generated using some distribution over the input.
It is possible for a function to be neither odd nor even, and for the case f(x) = 0, to be both odd and even. [20] The Taylor series of an even function contains only terms whose exponent is an even number, and the Taylor series of an odd function contains only terms whose exponent is an odd number. [21]
PPAD is a subset of the class TFNP, the class of function problems in FNP that are guaranteed to be total.The TFNP formal definition is given as follows: . A binary relation P(x,y) is in TFNP if and only if there is a deterministic polynomial time algorithm that can determine whether P(x,y) holds given both x and y, and for every x, there exists a y such that P(x,y) holds.
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]