enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The first deterministic primality test significantly faster than the naive methods was the cyclotomy test; its runtime can be proven to be O((log n) c log log log n), where n is the number to test for primality and c is a constant independent of n. Many further improvements were made, but none could be proven to have polynomial running time.

  3. Primality Testing for Beginners - Wikipedia

    en.wikipedia.org/wiki/Primality_Testing_for...

    The first part of the book concludes with chapter 4, on the history of prime numbers and primality testing, including the prime number theorem (in a weakened form), applications of prime numbers in cryptography, and the widely used Miller–Rabin primality test, which runs in randomized polynomial time. [5]

  4. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    As mentioned above, most applications use a Miller–Rabin or Baillie–PSW test for primality. Sometimes a Fermat test (along with some trial division by small primes) is performed first to improve performance. GMP since version 3.0 uses a base-210 Fermat test after trial division and before running Miller–Rabin tests.

  5. Fermat pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Fermat_pseudoprime

    The false statement that all numbers that pass the Fermat primality test for base 2 are prime is called the Chinese hypothesis. The smallest base-2 Fermat pseudoprime is 341. It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2 340 ≡ 1 (mod 341) and thus passes the Fermat primality test for the base 2.

  6. Lucas–Lehmer primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas–Lehmer_primality_test

    The test is considered valuable because it can provably test a large set of very large numbers for primality within an affordable amount of time. In contrast, the equivalently fast Pépin's test for any Fermat number can only be used on a much smaller set of very large numbers before reaching computational limits.

  7. Lucas–Lehmer–Riesel test - Wikipedia

    en.wikipedia.org/wiki/Lucas–Lehmer–Riesel_test

    In mathematics, the Lucas–Lehmer–Riesel test is a primality test for numbers of the form N = k ⋅ 2 n − 1 with odd k < 2 n. The test was developed by Hans Riesel and it is based on the Lucas–Lehmer primality test. It is the fastest deterministic algorithm known for numbers of that form.

  8. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...

  9. Pépin's test - Wikipedia

    en.wikipedia.org/wiki/Pépin's_test

    Because of the sparsity of the Fermat numbers, the Pépin test has only been run eight times (on Fermat numbers whose primality statuses were not already known). [ 1 ] [ 2 ] [ 3 ] Mayer, Papadopoulos and Crandall speculate that in fact, because of the size of the still undetermined Fermat numbers, it will take considerable advances in ...