enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [ 1 ] Generally, if the function sinx {\displaystyle \sin x} is any trigonometric function, and cos ⁡ x {\displaystyle \cos x} is its derivative,

  3. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    Since sinc is an even entire function (holomorphic over the entire complex plane), Si is entire, odd, and the integral in its definition can be taken along any path connecting the endpoints. By definition, Si(x) is the antiderivative of sin x / x whose value is zero at x = 0, and si(x) is the antiderivative whose value is zero at x = ∞.

  4. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 ⁡ x cos ⁡ 4 x d x = − 1 24 sin ⁡ 6 x + 1 8 sin ⁡ 4 x − 1 8 sin ⁡ 2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...

  5. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.

  6. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    Leonhard Euler used it to evaluate the integral / (+ ⁡) in his 1768 integral calculus textbook, [3] and Adrien-Marie Legendre described the general method in 1817. [ 4 ] The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [ 5 ]

  7. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    The symbol dx, called the differential of the variable x, indicates that the variable of integration is x. The function f(x) is called the integrand, the points a and b are called the limits (or bounds) of integration, and the integral is said to be over the interval [a, b], called the interval of integration. [18]

  8. List of definite integrals - Wikipedia

    en.wikipedia.org/wiki/List_of_definite_integrals

    In mathematics, the definite integral ()is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.

  9. Borwein integral - Wikipedia

    en.wikipedia.org/wiki/Borwein_integral

    In general, similar integrals have value ⁠ π / 2 ⁠ whenever the numbers 3, 5, 7… are replaced by positive real numbers such that the sum of their reciprocals is less than 1. In the example above, ⁠ 1 / 3 ⁠ + ⁠ 1 / 5 ⁠ + … + ⁠ 1 / 13 ⁠ < 1, but ⁠ 1 / 3 ⁠ + ⁠ 1 / 5 ⁠ + … + ⁠ 1 / 15 ⁠ > 1.