Search results
Results from the WOW.Com Content Network
Any randomized algorithm may be interpreted as a randomized choice among deterministic algorithms, and thus as a mixed strategy for Alice. Similarly, a non-random algorithm may be thought of as a pure strategy for Alice. In any two-player zero-sum game, if one player chooses a mixed strategy, then the other player has an optimal pure strategy ...
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are ...
There are many ways in which the resources used by an algorithm can be measured: the two most common measures are speed and memory usage; other measures could include transmission speed, temporary disk usage, long-term disk usage, power consumption, total cost of ownership, response time to external stimuli, etc. Many of these measures depend ...
Random optimization (RO) is a family of numerical optimization methods that do not require the gradient of the optimization problem and RO can hence be used on functions that are not continuous or differentiable. Such optimization methods are also known as direct-search, derivative-free, or black-box methods.
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.
Simon's problem considers access to a function : {,} {,}, as implemented by a black box or an oracle. This function is promised to be either a one-to-one function, or a two-to-one function; if is two-to-one, it is furthermore promised that two inputs and ′ evaluate to the same value if and only if and ′ differ in a fixed set of bits. I.e.,
Las Vegas algorithms were introduced by László Babai in 1979, in the context of the graph isomorphism problem, as a dual to Monte Carlo algorithms. [3] Babai [4] introduced the term "Las Vegas algorithm" alongside an example involving coin flips: the algorithm depends on a series of independent coin flips, and there is a small chance of failure (no result).
If any one of its input values is not compared, that one value could be the one that should have been selected, and the algorithm can be made to produce an incorrect answer. [28] Beyond this simple argument, there has been a significant amount of research on the exact number of comparisons needed for selection, both in the randomized and ...