enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partial regression plot - Wikipedia

    en.wikipedia.org/wiki/Partial_regression_plot

    Partial regression plots are related to, but distinct from, partial residual plots. Partial regression plots are most commonly used to identify data points with high leverage and influential data points that might not have high leverage. Partial residual plots are most commonly used to identify the nature of the relationship between Y and X i ...

  3. Partial residual plot - Wikipedia

    en.wikipedia.org/wiki/Partial_residual_plot

    ^ = regression coefficient from the i-th independent variable in the full model, X i = the i-th independent variable. Partial residual plots are widely discussed in the regression diagnostics literature (e.g., see the References section below).

  4. Partial least squares regression - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares...

    Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression [1]; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...

  5. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  6. Partially linear model - Wikipedia

    en.wikipedia.org/wiki/Partially_linear_model

    The real-world application of partially linear model was first considered for analyzing data by Engle, Granger, Rice and Weiss in 1986. [2]In their point of view, the relevance between temperature and the consumption of electricity cannot be expressed in a linear model, because there are massive of confounding factors, such as average income, goods price, consumer purchase ability and some ...

  7. Partial autocorrelation function - Wikipedia

    en.wikipedia.org/wiki/Partial_autocorrelation...

    Partial autocorrelation is a commonly used tool for identifying the order of an autoregressive model. [6] As previously mentioned, the partial autocorrelation of an AR(p) process is zero at lags greater than p. [5] [8] If an AR model is determined to be appropriate, then the sample partial autocorrelation plot is examined to help identify the ...

  8. Partial leverage - Wikipedia

    en.wikipedia.org/wiki/Partial_leverage

    In regression analysis, partial leverage (PL) is a measure of the contribution of the individual independent variables to the total leverage of each observation. That is, if h i is the i th element of the diagonal of the hat matrix, PL is a measure of how h i changes as a variable is added to the regression model.

  9. Leverage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Leverage_(statistics)

    Note that the partial leverage is the leverage of the point in the partial regression plot for the variable. Data points with large partial leverage for an independent variable can exert undue influence on the selection of that variable in automatic regression model building procedures.