enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partial regression plot - Wikipedia

    en.wikipedia.org/wiki/Partial_regression_plot

    Partial regression plots are related to, but distinct from, partial residual plots. Partial regression plots are most commonly used to identify data points with high leverage and influential data points that might not have high leverage. Partial residual plots are most commonly used to identify the nature of the relationship between Y and X i ...

  3. Partial residual plot - Wikipedia

    en.wikipedia.org/wiki/Partial_residual_plot

    ^ = regression coefficient from the i-th independent variable in the full model, X i = the i-th independent variable. Partial residual plots are widely discussed in the regression diagnostics literature (e.g., see the References section below).

  4. Partial least squares regression - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares...

    Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression [1]; instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...

  5. Leverage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Leverage_(statistics)

    Note that the partial leverage is the leverage of the point in the partial regression plot for the variable. Data points with large partial leverage for an independent variable can exert undue influence on the selection of that variable in automatic regression model building procedures.

  6. Regression diagnostic - Wikipedia

    en.wikipedia.org/wiki/Regression_diagnostic

    Partial regression plot Student's t test for testing inclusion of a single explanatory variable, or the F test for testing inclusion of a group of variables, both under the assumption that model errors are homoscedastic and have a normal distribution .

  7. Partial autocorrelation function - Wikipedia

    en.wikipedia.org/wiki/Partial_autocorrelation...

    Partial autocorrelation is a commonly used tool for identifying the order of an autoregressive model. [6] As previously mentioned, the partial autocorrelation of an AR(p) process is zero at lags greater than p. [5] [8] If an AR model is determined to be appropriate, then the sample partial autocorrelation plot is examined to help identify the ...

  8. Partial least squares path modeling - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares_path...

    The partial least squares path modeling or partial least squares structural equation modeling (PLS-PM, PLS-SEM) [1] [2] [3] is a method for structural equation modeling that allows estimation of complex cause-effect relationships in path models with latent variables.

  9. Outline of regression analysis - Wikipedia

    en.wikipedia.org/wiki/Outline_of_regression_analysis

    Regression analysis – use of statistical techniques for learning about the relationship between one or more dependent variables (Y) and one or more independent variables (X). Overview articles [ edit ]