Search results
Results from the WOW.Com Content Network
Process each cell in the grid independently. Calculate a cell index using comparisons of the contour level(s) with the data values at the cell corners. Use a pre-built lookup table, keyed on the cell index, to describe the output geometry for the cell. Apply linear interpolation along the boundaries of the cell to calculate the exact contour ...
This is done by creating an index to a precalculated array of 256 possible polygon configurations (2 8 =256) within the cube, by treating each of the 8 scalar values as a bit in an 8-bit integer. If the scalar's value is higher than the iso-value (i.e., it is inside the surface) then the appropriate bit is set to one, while if it is lower ...
A scatter plot, also called a scatterplot, scatter graph, scatter chart, scattergram, or scatter diagram, [2] is a type of plot or mathematical diagram using Cartesian coordinates to display values for typically two variables for a set of data. If the points are coded (color/shape/size), one additional variable can be displayed.
The primary methods for visualizing two-dimensional (2D) scalar fields are color mapping and drawing contour lines. 2D vector fields are visualized using glyphs and streamlines or line integral convolution methods. 2D tensor fields are often resolved to a vector field by using one of the two eigenvectors to represent the tensor each point in ...
The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.
Elliptic curve scalar multiplication is the operation of successively adding a point along an elliptic curve to itself repeatedly. It is used in elliptic curve cryptography (ECC). The literature presents this operation as scalar multiplication , as written in Hessian form of an elliptic curve .
See homology for an introduction to the notation.. Persistent homology is a method for computing topological features of a space at different spatial resolutions. More persistent features are detected over a wide range of spatial scales and are deemed more likely to represent true features of the underlying space rather than artifacts of sampling, noise, or particular choice of parameters.
The Hénon map does not have a strange attractor for all values of the parameters a and b. For example, by keeping b fixed at 0.3 the bifurcation diagram shows that for a = 1.25 the Hénon map has a stable periodic orbit as an attractor. Variation of 'b' showing the Bifurcation diagram. The boomerang shape is further drawn in bold at the top.