enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Big-little-big lemma - Wikipedia

    en.wikipedia.org/wiki/Big-little-big_lemma

    The lemma concerns the angles made by consecutive pairs of creases at a single vertex of the crease pattern. It states that if any one of these angles is a local minimum (that is, smaller than the two angles on either side of it), then exactly one of the two creases bounding the angle must be a mountain fold and exactly one must be a valley fold.

  3. Kawasaki's theorem - Wikipedia

    en.wikipedia.org/wiki/Kawasaki's_theorem

    Kawasaki's theorem or Kawasaki–Justin theorem is a theorem in the mathematics of paper folding that describes the crease patterns with a single vertex that may be folded to form a flat figure. It states that the pattern is flat-foldable if and only if alternatingly adding and subtracting the angles of consecutive folds around the vertex gives ...

  4. Exterior angle theorem - Wikipedia

    en.wikipedia.org/wiki/Exterior_angle_theorem

    In several high school treatments of geometry, the term "exterior angle theorem" has been applied to a different result, [1] namely the portion of Proposition 1.32 which states that the measure of an exterior angle of a triangle is equal to the sum of the measures of the remote interior angles. This result, which depends upon Euclid's parallel ...

  5. Sum of angles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Sum_of_angles_of_a_triangle

    Exterior angles can be also defined, and the Euclidean triangle postulate can be formulated as the exterior angle theorem. One can also consider the sum of all three exterior angles, that equals to 360° [9] in the Euclidean case (as for any convex polygon), is less than 360° in the spherical case, and is greater than 360° in the hyperbolic case.

  6. Absolute geometry - Wikipedia

    en.wikipedia.org/wiki/Absolute_geometry

    In Euclid's Elements, the first 28 Propositions and Proposition 31 avoid using the parallel postulate, and therefore are valid in absolute geometry.One can also prove in absolute geometry the exterior angle theorem (an exterior angle of a triangle is larger than either of the remote angles), as well as the Saccheri–Legendre theorem, which states that the sum of the measures of the angles in ...

  7. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Angle trisection is the construction, using only a straightedge and a compass, of an angle that is one-third of a given arbitrary angle. This is impossible in the general case. For example, the angle 2 π /5 radians (72° = 360°/5) can be trisected, but the angle of π /3 radians (60°) cannot be trisected. [8]

  8. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    In spherical geometry, a spherical quadrilateral formed from four intersecting greater circles is cyclic if and only if the summations of the opposite angles are equal, i.e., α + γ = β + δ for consecutive angles α, β, γ, δ of the quadrilateral. [30] One direction of this theorem was proved by Anders Johan Lexell in 1782. [31]

  9. Angle trisection - Wikipedia

    en.wikipedia.org/wiki/Angle_trisection

    Thus 8x 3 − 6x − 1 = 0. Define p(t) to be the polynomial p(t) = 8t 3 − 6t − 1. Since x = cos 20° is a root of p(t), the minimal polynomial for cos 20° is a factor of p(t). Because p(t) has degree 3, if it is reducible over by Q then it has a rational root. By the rational root theorem, this root must be ±1, ± ⁠ 1 / 2 ⁠, ± ⁠ 1 ...