Search results
Results from the WOW.Com Content Network
For a function to have an inverse, it must be one-to-one.If a function is not one-to-one, it may be possible to define a partial inverse of by restricting the domain. For example, the function = defined on the whole of is not one-to-one since = for any .
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
In mathematics, the inverse trigonometric functions (occasionally also called antitrigonometric, [1] cyclometric, [2] or arcus functions [3]) are the inverse functions of the trigonometric functions, under suitably restricted domains.
The function is bijective (one-to-one and onto, one-to-one correspondence, or invertible) if each element of the codomain is mapped to by exactly one element of the domain; that is, if the function is both injective and surjective. A bijective function is also called a bijection.
The function g must equal the inverse of f on the image of f, but may take any values for elements of Y not in the image. A function f with nonempty domain is injective if and only if it has a left inverse. [21] An elementary proof runs as follows: If g is the left inverse of f, and f(x) = f(y), then g(f(x)) = g(f(y)) = x = y.
These values from a restricted domain are called principal values. The antiderivative can be considered as a multivalued function. The antiderivative of a function is the set of functions whose derivative is that function. The constant of integration follows from the fact that the derivative of a constant function is 0.
R“α is the domain of a relation R restricted to a class α *37.01 R ε: αR ε β means "α is the domain of R restricted to β" *37.02 ‘‘‘ (Triple open quotation marks.) αR‘‘‘κ means "α is the domain of R restricted to some element of κ" *37.04 E!! Means roughly that a relation is a function when restricted to a certain ...
The importance of such functions lies in the fact that their function space is similar to L p spaces, but its members are not required to satisfy any growth restriction on their behavior at the boundary of their domain (at infinity if the domain is unbounded): in other words, locally integrable functions can grow arbitrarily fast at the domain ...