Search results
Results from the WOW.Com Content Network
Genetic linkage is the tendency of DNA sequences that are close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction.Two genetic markers that are physically near to each other are unlikely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be more linked than markers that are far apart.
In genetics, a centimorgan (abbreviated cM) or map unit (m.u.) is a unit for measuring genetic linkage. It is defined as the distance between chromosome positions (also termed loci or markers) for which the expected average number of intervening chromosomal crossovers in a single generation is 0.01. It is often used to infer distance along a ...
This distance assumes that genetic differences arise due to mutation and genetic drift, but this distance measure is known to give more reliable population trees than other distances particularly for microsatellite DNA data. This method is not ideal in cases where natural selection plays a significant role in a populations genetics.
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.
Where d is the distance in map units, the Morgan Mapping Function states that the recombination frequency r can be expressed as =.This assumes that one crossover occurs, at most, in an interval between two loci, and that the probability of the occurrence of this crossover is proportional to the map length of the interval.
Genetic draft results in similar behavior to the equation above, but with an effective population size that may have no relationship to the actual number of individuals in the population. [3] Instead, the effective population size may depend on factors such as the recombination rate and the frequency and strength of beneficial mutations.
Population structure (also called genetic structure and population stratification) is the presence of a systematic difference in allele frequencies between subpopulations. In a randomly mating (or panmictic ) population, allele frequencies are expected to be roughly similar between groups.
Allele frequency, or gene frequency, is the relative frequency of an allele (variant of a gene) at a particular locus in a population, expressed as a fraction or percentage. [1] Specifically, it is the fraction of all chromosomes in the population that carry that allele over the total population or sample size.