Search results
Results from the WOW.Com Content Network
The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0, a mathematical truth. But the same substitution applied to the original equation results in x/6 + 0/0 = 1, which is mathematically meaningless.
In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets
6 1 2 1 1 −1 4 5 9. and would be written in modern notation as 6 1 / 4 , 1 1 / 5 , and 2 − 1 / 9 (i.e., 1 8 / 9 ). The horizontal fraction bar is first attested in the work of Al-Hassār (fl. 1200), [35] a Muslim mathematician from Fez, Morocco, who specialized in Islamic inheritance jurisprudence.
An equation states that two expressions are equal using the symbol for equality, = (the equals sign). [31] One of the best-known equations describes Pythagoras' law relating the length of the sides of a right angle triangle: [ 32 ]
For example, 20 apples divide into five groups of four apples, meaning that "twenty divided by five is equal to four". This is denoted as 20 / 5 = 4 , or 20 / 5 = 4 . [ 2 ] In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient.
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
The unique pair of values a, b satisfying the first two equations is (a, b) = (1, 1); since these values also satisfy the third equation, there do in fact exist a, b such that a times the original first equation plus b times the original second equation equals the original third equation; we conclude that the third equation is linearly ...
But in the ring Z/6Z, 2 is a zero divisor. This equation has two distinct solutions, x = 1 and x = 4, so the expression is undefined. In field theory, the expression is only shorthand for the formal expression ab −1, where b −1 is the multiplicative inverse of b.