enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on convention). An infinite subset of the natural numbers cannot be bounded from above.

  3. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...

  4. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.

  5. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    Thus, the infimum or meet of a collection of subsets is the greatest lower bound while the supremum or join is the least upper bound. In this context, the inner limit, lim inf X n, is the largest meeting of tails of the sequence, and the outer limit, lim sup X n, is the smallest joining of tails of the sequence. The following makes this precise.

  6. Limits of integration - Wikipedia

    en.wikipedia.org/wiki/Limits_of_integration

    In calculus and mathematical analysis the limits of integration (or bounds of integration) of the integral () of a Riemann integrable function f {\displaystyle f} defined on a closed and bounded interval are the real numbers a {\displaystyle a} and b {\displaystyle b} , in which a {\displaystyle a} is called the lower limit and b {\displaystyle ...

  7. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    If () = ([,]) (that is, the supremum of over [,]), the method is the upper rule and gives an upper Riemann sum or upper Darboux sum. If f ( x i ∗ ) = inf f ( [ x i − 1 , x i ] ) {\displaystyle f(x_{i}^{*})=\inf f([x_{i-1},x_{i}])} (that is, the infimum of f over [ x i − 1 , x i ] {\displaystyle [x_{i-1},x_{i}]} ), the method is the lower ...

  8. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x , denoted ⌈ x ⌉ or ceil( x ) .

  9. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    By the boundedness theorem, f is bounded from above, hence, by the Dedekind-completeness of the real numbers, the least upper bound (supremum) M of f exists. It is necessary to find a point d in [a, b] such that M = f(d). Let n be a natural number. As M is the least upper bound, M – 1/n is not an upper bound for f.