Search results
Results from the WOW.Com Content Network
The results of that example may be used to simulate a fractional factorial experiment using a half-fraction of the original 2 4 = 16 run design. The table shows the 2 4-1 = 8 run half-fraction experiment design and the resulting filtration rate, extracted from the table for the full 16 run factorial experiment.
A fractional factorial design contains a carefully chosen subset of these combinations. The criterion for choosing the subsets is discussed in detail in the fractional factorial designs article. Formalized by Frank Yates , a Yates analysis exploits the special structure of these designs to generate least squares estimates for factor effects for ...
In a fractional factorial experiment, the contrast vectors belonging to a given effect are restricted to the treatment combinations in the fraction. Thus, in the half-fraction {11, 12, 13} in the 2 × 3 example, the three effects may be represented by the column vectors in the following table:
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The interaction of two factors with s 1 and s 2 levels, respectively, has (s 1 −1)(s 2 −1) degrees of freedom. The formula for more than two factors follows this pattern. In the 2 × 3 example above, the degrees of freedom for the two main effects and the interaction — the number of columns for each — are 1, 2 and 2, respectively.
Plackett–Burman designs are experimental designs presented in 1946 by Robin L. Plackett and J. P. Burman while working in the British Ministry of Supply. [1] Their goal was to find experimental designs for investigating the dependence of some measured quantity on a number of independent variables (factors), each taking L levels, in such a way as to minimize the variance of the estimates of ...
An easy way to estimate a first-degree polynomial model is to use a factorial experiment or a fractional factorial design. This is sufficient to determine which explanatory variables affect the response variable(s) of interest.
During World War II, a more sophisticated form of DOE, called factorial design, became a big weapon for speeding up industrial development for the Allied forces. These designs can be quite compact, involving as few as two levels of each factor and only a fraction of all the combinations, and yet they are quite powerful for screening purposes.