Search results
Results from the WOW.Com Content Network
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946.
In statistics, ordinal regression, also called ordinal classification, is a type of regression analysis used for predicting an ordinal variable, i.e. a variable whose value exists on an arbitrary scale where only the relative ordering between different values is significant.
In statistics, ranking is the data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted.. For example, if the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of these data items would be 2, 3, 1 and 4 respectively.
Many behavioural scientists use the mean for ordinal data anyway. This is often justified on the basis that the ordinal type in behavioural science is in fact somewhere between the true ordinal and interval types; although the interval difference between two ordinal ranks is not constant, it is often of the same order of magnitude.
In statistics, ranking is the data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted. For example, if the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of these data items would be 2, 3, 1 and 4 respectively.
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
In statistics, the Kendall rank correlation coefficient, commonly referred to as Kendall's τ coefficient (after the Greek letter τ, tau), is a statistic used to measure the ordinal association between two measured quantities. A τ test is a non-parametric hypothesis test for statistical dependence
The data for this test consists of two groups; and for each member of the groups, the outcome is ranked for the study as a whole. Kerby showed that this rank correlation can be expressed in terms of two concepts: the percent of data that support a stated hypothesis, and the percent of data that do not support it.