Search results
Results from the WOW.Com Content Network
In computer science, a Boolean expression is an expression used in programming languages that produces a Boolean value when evaluated. A Boolean value is either true or false.A Boolean expression may be composed of a combination of the Boolean constants True/False or Yes/No, Boolean-typed variables, Boolean-valued operators, and Boolean-valued functions.
In programming languages with a built-in Boolean data type, such as Pascal, C, Python or Java, the comparison operators such as > and ≠ are usually defined to return a Boolean value. Conditional and iterative commands may be defined to test Boolean-valued expressions.
For the BINARY LARGE OBJECT data type, the multipliers K (1 024), M (1 048 576), G (1 073 741 824) and T (1 099 511 627 776) can be optionally used when specifying the length. Boolean. BOOLEAN; The BOOLEAN data type can store the values TRUE and FALSE. Numerical. INTEGER (or INT), SMALLINT and BIGINT; FLOAT, REAL and DOUBLE PRECISION
To find the value of the Boolean function for a given assignment of (Boolean) values to the variables, we start at the reference edge, which points to the BDD's root, and follow the path that is defined by the given variable values (following a low edge if the variable that labels a node equals FALSE, and following the high edge if the variable ...
In database theory, a conjunctive query is a restricted form of first-order queries using the logical conjunction operator. Many first-order queries can be written as conjunctive queries. In particular, a large part of queries issued on relational databases can be expressed in this way.
A Boolean type, typically denoted bool or boolean, is typically a logical type that can have either the value true or the value false. Although only one bit is necessary to accommodate the value set true and false, programming languages typically implement Boolean types as one or more bytes.
A law of Boolean algebra is an identity such as x ∨ (y ∨ z) = (x ∨ y) ∨ z between two Boolean terms, where a Boolean term is defined as an expression built up from variables and the constants 0 and 1 using the operations ∧, ∨, and ¬. The concept can be extended to terms involving other Boolean operations such as ⊕, →, and ≡ ...
Then, if we map boolean operators into set operators, the "translated" above text are valid also for sets: there are many "minimal complete set of set-theory operators" that can generate any other set relations. The more popular "Minimal complete operator sets" are {¬, ∩} and {¬, ∪}.