Ad
related to: rational value rational purposes theorem meaning in math problems printable
Search results
Results from the WOW.Com Content Network
In mathematics, two non-zero real numbers a and b are said to be commensurable if their ratio a / b is a rational number; otherwise a and b are called incommensurable. (Recall that a rational number is one that is equivalent to the ratio of two integers.) There is a more general notion of commensurability in group theory.
The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial ( x – r ) can be factored out of the polynomial using polynomial long division , resulting in a polynomial of lower degree ...
Rashevsky–Chow theorem (control theory) Rational root theorem (algebra, polynomials) Rationality theorem ; Ratner's theorems (ergodic theory) Rauch comparison theorem (Riemannian geometry) Rédei's theorem (group theory) Reeb sphere theorem ; Reeh–Schlieder theorem (local quantum field theory) Reflection theorem (algebraic number theory)
In mathematics, an irrationality measure of a real number is a measure of how "closely" it can be approximated by rationals. If a function f ( t , λ ) {\displaystyle f(t,\lambda )} , defined for t , λ > 0 {\displaystyle t,\lambda >0} , takes positive real values and is strictly decreasing in both variables, consider the following inequality :
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
For algebraic reasons this product is necessarily an integer, and using arguments relating to Wronskians it can be shown that it is non-zero, so its absolute value is an integer Ω ≥ 1. Using a version of the mean value theorem for matrices it is possible to get an analytic bound on Ω as well, and in fact using big-O notation we have
The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number p / q is a "good" approximation of a real number α if the absolute value of the difference between p / q and α may not decrease if p / q is replaced by another rational number with a smaller denominator.
In 1946, Stanislaw Ulam asked whether there exists a set of points at rational distances from each other that forms a dense subset of the Euclidean plane. [2] While the answer to this question is still open, József Solymosi and Frank de Zeeuw showed that the only irreducible algebraic curves that contain infinitely many points at rational distances are lines and circles. [3]
Ad
related to: rational value rational purposes theorem meaning in math problems printable