enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    When working with graphs that are too large to store explicitly (or infinite), it is more practical to describe the complexity of breadth-first search in different terms: to find the nodes that are at distance d from the start node (measured in number of edge traversals), BFS takes O(b d + 1) time and memory, where b is the "branching factor ...

  3. Parallel breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Parallel_breadth-first_search

    The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.

  4. External memory graph traversal - Wikipedia

    en.wikipedia.org/.../External_memory_graph_traversal

    Graph traversal is a subroutine in most graph algorithms. The goal of a graph traversal algorithm is to visit (and / or process) every node of a graph. Graph traversal algorithms, like breadth-first search and depth-first search, are analyzed using the von Neumann model, which assumes uniform memory access cost. This view neglects the fact ...

  5. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A universal traversal sequence is a sequence of instructions comprising a graph traversal for any regular graph with a set number of vertices and for any starting vertex. A probabilistic proof was used by Aleliunas et al. to show that there exists a universal traversal sequence with number of instructions proportional to O ( n 5 ) for any ...

  6. GraphBLAS - Wikipedia

    en.wikipedia.org/wiki/GraphBLAS

    GraphBLAS (/ ˈ ɡ r æ f ˌ b l ɑː z / ⓘ) is an API specification that defines standard building blocks for graph algorithms in the language of linear algebra. [1] [2] GraphBLAS is built upon the notion that a sparse matrix can be used to represent graphs as either an adjacency matrix or an incidence matrix.

  7. Brandes' algorithm - Wikipedia

    en.wikipedia.org/wiki/Brandes'_algorithm

    The breadth-first search starts at , and the shortest distance () of each vertex from is recorded, dividing the graph into discrete layers. Additionally, each vertex v {\displaystyle v} keeps track of the set of vertices which in the preceding layer which point to it, p ( v ) {\displaystyle p(v)} .

  8. Lexicographic breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Lexicographic_breadth...

    The algorithm is called lexicographic breadth-first search because the order it produces is an ordering that could also have been produced by a breadth-first search, and because if the ordering is used to index the rows and columns of an adjacency matrix of a graph then the algorithm sorts the rows and columns into lexicographical order.

  9. Topological sorting - Wikipedia

    en.wikipedia.org/wiki/Topological_sorting

    An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):