Search results
Results from the WOW.Com Content Network
General parameters used for constructing nose cone profiles. Given the problem of the aerodynamic design of the nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile, shell or bullet), an important problem is the determination of the nose cone geometrical shape for optimum performance.
Given: Ellipsoid x 2 / a 2 + y 2 / b 2 + z 2 / c 2 = 1 and the plane with equation n x x + n y y + n z z = d, which have an ellipse in common. Wanted: Three vectors f 0 (center) and f 1, f 2 (conjugate vectors), such that the ellipse can be represented by the parametric equation
This is a torispherical head also named Semi ellipsoidal head (According to DIN 28013). The radius of the dish is 80% of the diameter of the cylinder ( r 1 = 0.8 × D o {\displaystyle r_{1}=0.8\times Do} ).
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
An alternative parametrization exists that closely follows the angular parametrization of spherical coordinates: [1] = , = , = . Here, > parametrizes the concentric ellipsoids around the origin and [,] and [,] are the usual polar and azimuthal angles of spherical coordinates, respectively.
A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters.
This gives a somewhat rounded nose regardless of the sharpness ratio. An elliptical ogive is normally described in terms of the ratio of the length of the ogive to the diameter of the shank. A ratio of one half would be, once again, a hemisphere. Values close to 1 are common in practice. Elliptical ogives are mainly used in pistol bullets.
The yellow sheet is the prism of a half-hyperbola corresponding to ν=-45°, whereas the red tube is an elliptical prism corresponding to μ=1. The blue sheet corresponds to z=1. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (2.182, -1.661, 1.0).