enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be applied to an arbitrary n-by-m matrix by applying it to normal equations A T A and right-hand side vector A T b, since A T A is a symmetric positive-semidefinite matrix for any A. The result is conjugate gradient on the normal equations (CGN or CGNR). A T Ax = A T b

  3. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    In mathematics, positive semidefinite may refer to: Positive semidefinite function; Positive semidefinite matrix; Positive semidefinite quadratic form;

  4. File:Example of Positive Semidefinite Matrices.webm

    en.wikipedia.org/wiki/File:Example_of_Positive...

    What links here; Upload file; Special pages; Printable version; Page information

  5. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector , where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  6. Positive-definite function - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_function

    Let be the set of real numbers and be the set of complex numbers. A function f : R → C {\displaystyle f:\mathbb {R} \to \mathbb {C} } is called positive semi-definite if for all real numbers x 1 , …, x n the n × n matrix

  7. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In contrast with the complex case, a positive-semidefinite operator on a real Hilbert space may not be symmetric. As a counterexample, define A : R 2 → R 2 {\displaystyle A:\mathbb {R} ^{2}\to \mathbb {R} ^{2}} to be an operator of rotation by an acute angle φ ∈ ( − π / 2 , π / 2 ) . {\displaystyle \varphi \in (-\pi /2,\pi /2).}

  8. Semidefinite programming - Wikipedia

    en.wikipedia.org/wiki/Semidefinite_programming

    Semidefinite programming (SDP) is a subfield of mathematical programming concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron. [1]

  9. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation:

  1. Related searches matlab check positive semidefinite or false data set example for students

    positive semidefinite matrixpositive and semi definite matrix
    positive semidefinite functionwhat is a positive semi definite