enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    This implies that at a local minimum the Hessian is positive-semidefinite, and at a local maximum the Hessian is negative-semidefinite. For positive-semidefinite and negative-semidefinite Hessians the test is inconclusive (a critical point where the Hessian is semidefinite but not definite may be a local extremum or a saddle point).

  3. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Download as PDF; Printable version; In other projects ... move to sidebar hide. In mathematics, positive semidefinite may refer to: Positive semidefinite function ...

  4. File:Example of Positive Semidefinite Matrices.webm

    en.wikipedia.org/wiki/File:Example_of_Positive...

    What links here; Upload file; Special pages; Printable version; Page information

  5. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1 corner of M,

  6. Diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonally_dominant_matrix

    A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix is not necessarily positive semidefinite. For example, consider

  7. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at (x, y) implies that f xx and f yy have the same sign there. Therefore, the second condition, that f xx be greater (or less) than zero, could equivalently be that f yy or tr( H ) = f xx + f yy be greater (or less) than zero at that point.

  8. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In contrast with the complex case, a positive-semidefinite operator on a real Hilbert space may not be symmetric. As a counterexample, define A : R 2 → R 2 {\displaystyle A:\mathbb {R} ^{2}\to \mathbb {R} ^{2}} to be an operator of rotation by an acute angle φ ∈ ( − π / 2 , π / 2 ) . {\displaystyle \varphi \in (-\pi /2,\pi /2).}

  9. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    The FIM is a N × N positive semidefinite matrix. If it is positive definite, then it defines a Riemannian metric [11] on the N-dimensional parameter space. The topic information geometry uses this to connect Fisher information to differential geometry, and in that context, this metric is known as the Fisher information metric.

  1. Related searches matlab check positive semidefinite or false data set example in pdf free

    positive semidefinite matrix testpositive semidefinite function
    positive semidefinite matrix