Search results
Results from the WOW.Com Content Network
C A is the analytical concentration of the acid and C H is the concentration the hydrogen ion that has been added to the solution. The self-dissociation of water is ignored. A quantity in square brackets, [X], represents the concentration of the chemical substance X. It is understood that the symbol H + stands for the hydrated hydronium ion.
The labeling is arbitrary in initial choice, but once chosen fixed for the calculation. If any reference to an actual entity (say hydrogen ions H +) or any entity at all (say X) is made, the quantity symbol q is followed by curved ( ) brackets enclosing the molecular formula of X, i.e. q(X), or for a component i of a mixture q(X i).
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase c {\displaystyle c} : [ 2 ]
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration , molar concentration , number concentration , and volume concentration . [ 1 ]
The Charlot equation, named after Gaston Charlot, is used in analytical chemistry to relate the hydrogen ion concentration, and therefore the pH, with the formal analytical concentration of an acid and its conjugate base. It can be used for computing the pH of buffer solutions when the approximations of the Henderson–Hasselbalch equation ...
If the amount in the sample is below an instrument's range of measurement, the method of addition can be used. In this method, a known quantity of the element or compound under study is added, and the difference between the concentration added and the concentration observed is the amount actually in the sample.
If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be called a "2 normal" solution. It can also be called a "2 normal" solution. Similarly, for a solution with c (H 3 PO 4 ) = 1 mol/L, the normality is 3 N because phosphoric acid contains 3 acidic H atoms.
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.