Search results
Results from the WOW.Com Content Network
In propositional logic, a propositional formula is a type of syntactic formula which is well formed. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, [1] or a sentential formula.
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule : when p =T (the hypothesis selects the first two lines of the table), we see (at column-14) that p ∨ q =T.
Classical propositional calculus is the standard propositional logic. Its intended semantics is bivalent and its main property is that it is strongly complete, otherwise said that whenever a formula semantically follows from a set of premises, it also follows from that set syntactically. Many different equivalent complete axiom systems have ...
In this sense, propositional logic is the foundation of first-order logic and higher-order logic. Propositional logic is typically studied with a formal language, [c] in which propositions are represented by letters, which are called propositional variables. These are then used, together with symbols for connectives, to make propositional formula.
In a given propositional logic, a formula can be defined as follows: Every propositional variable is a formula. Given a formula X, the negation ¬X is a formula. Given two formulas X and Y, and a binary connective b (such as the logical conjunction ∧), the expression (X b Y) is a formula. (Note the parentheses.) Through this construction, all ...
In logic, a clause is a propositional formula formed from a finite collection of literals (atoms or their negations) and logical connectives.A clause is true either whenever at least one of the literals that form it is true (a disjunctive clause, the most common use of the term), or when all of the literals that form it are true (a conjunctive clause, a less common use of the term).
An atomic formula is a formula that contains no logical connectives nor quantifiers, or equivalently a formula that has no strict subformulas. The precise form of atomic formulas depends on the formal system under consideration; for propositional logic, for example, the atomic formulas are the propositional variables.
In mathematical logic, a sentence (or closed formula) [1] of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition , something that must be true or false.