Search results
Results from the WOW.Com Content Network
Though there are many approximate solutions (such as Welch's t-test), the problem continues to attract attention [4] as one of the classic problems in statistics. Multiple comparisons: There are various ways to adjust p-values to compensate for the simultaneous or sequential testing of hypotheses. Of particular interest is how to simultaneously ...
Mathematical statistics is the application of probability theory and other mathematical concepts to statistics, as opposed to techniques for collecting statistical data. [1] Specific mathematical techniques that are commonly used in statistics include mathematical analysis , linear algebra , stochastic analysis , differential equations , and ...
Mathematical statistics is the application of mathematics to statistics. Mathematical techniques used for this include mathematical analysis, linear algebra, stochastic analysis, differential equations, and measure-theoretic probability theory.
In statistics, the reference class problem is the problem of deciding what class to use when calculating the probability applicable to a particular case.. For example, to estimate the probability of an aircraft crashing, we could refer to the frequency of crashes among various different sets of aircraft: all aircraft, this make of aircraft, aircraft flown by this company in the last ten years ...
List of fields of application of statistics; List of graphical methods; List of statistical software. Comparison of statistical packages; List of graphing software; Comparison of Gaussian process software; List of stochastic processes topics; List of matrices used in statistics; Timeline of probability and statistics; List of unsolved problems ...
The answer to the first question is 2 / 3 , as is shown correctly by the "simple" solutions. But the answer to the second question is now different: the conditional probability the car is behind door 1 or door 2 given the host has opened door 3 (the door on the right) is 1 / 2 .
An example application of the method of moments is to estimate polynomial probability density distributions. In this case, an approximating polynomial of order is defined on an interval [,]. The method of moments then yields a system of equations, whose solution involves the inversion of a Hankel matrix. [2]
A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%).