enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    Notably, correlation is dimensionless while covariance is in units obtained by multiplying the units of the two variables. If Y always takes on the same values as X , we have the covariance of a variable with itself (i.e. σ X X {\displaystyle \sigma _{XX}} ), which is called the variance and is more commonly denoted as σ X 2 , {\displaystyle ...

  3. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    When the covariance is normalized, one obtains the Pearson correlation coefficient, which gives the goodness of the fit for the best possible linear function describing the relation between the variables. In this sense covariance is a linear gauge of dependence.

  4. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  5. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  6. Distance correlation - Wikipedia

    en.wikipedia.org/wiki/Distance_correlation

    The distance correlation is derived from a number of other quantities that are used in its specification, specifically: distance variance, distance standard deviation, and distance covariance. These quantities take the same roles as the ordinary moments with corresponding names in the specification of the Pearson product-moment correlation ...

  7. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    Another generalization of variance for vector-valued random variables , which results in a scalar value rather than in a matrix, is the generalized variance (), the determinant of the covariance matrix. The generalized variance can be shown to be related to the multidimensional scatter of points around their mean.

  8. Analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_covariance

    Mathematically, ANCOVA decomposes the variance in the DV into variance explained by the CV(s), variance explained by the categorical IV, and residual variance. Intuitively, ANCOVA can be thought of as 'adjusting' the DV by the group means of the CV(s). [1] The ANCOVA model assumes a linear relationship between the response (DV) and covariate (CV):

  9. Covariance function - Wikipedia

    en.wikipedia.org/wiki/Covariance_function

    For a given variance, a simple stationary parametric covariance function is the "exponential covariance function" = ⁡ (/)where V is a scaling parameter (correlation length), and d = d(x,y) is the distance between two points.