enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Close-packing of equal spheres - Wikipedia

    en.wikipedia.org/wiki/Close-packing_of_equal_spheres

    [1] [2] Highest density is known only for 1, 2, 3, 8, and 24 dimensions. [3] Many crystal structures are based on a close-packing of a single kind of atom, or a close-packing of large ions with smaller ions filling the spaces between them. The cubic and hexagonal arrangements are very close to one another in energy, and it may be difficult to ...

  3. Hexagonal crystal family - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_crystal_family

    Hexagonal close packed (hcp) unit cell. Hexagonal close packed (hcp) is one of the two simple types of atomic packing with the highest density, the other being the face-centered cubic (fcc). However, unlike the fcc, it is not a Bravais lattice, as there are two nonequivalent sets of lattice points.

  4. Circle packing - Wikipedia

    en.wikipedia.org/wiki/Circle_packing

    In the two-dimensional Euclidean plane, Joseph Louis Lagrange proved in 1773 that the highest-density lattice packing of circles is the hexagonal packing arrangement, [1] in which the centres of the circles are arranged in a hexagonal lattice (staggered rows, like a honeycomb), and each circle is

  5. Interstitial site - Wikipedia

    en.wikipedia.org/wiki/Interstitial_site

    A close packed unit cell, both face-centered cubic and hexagonal close packed, can form two different shaped holes. Looking at the three green spheres in the hexagonal packing illustration at the top of the page, they form a triangle-shaped hole. If an atom is arranged on top of this triangular hole it forms a tetrahedral interstitial hole.

  6. Structure factor - Wikipedia

    en.wikipedia.org/wiki/Structure_factor

    2.3.6 Hexagonal close-packed (HCP) 2.4 Perfect crystals in one and two dimensions. 3 Imperfect crystals. ... In two dimensions, there are only five Bravais lattices ...

  7. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    The sphere packing problem is the three-dimensional version of a class of ball-packing problems in arbitrary dimensions. In two dimensions, the equivalent problem is packing circles on a plane. In one dimension it is packing line segments into a linear universe. [10]

  8. Kepler conjecture - Wikipedia

    en.wikipedia.org/wiki/Kepler_conjecture

    Diagrams of cubic close packing (left) and hexagonal close packing (right). Imagine filling a large container with small equal-sized spheres: Say a porcelain gallon jug with identical marbles. The "density" of the arrangement is equal to the total volume of all the marbles, divided by the volume of the jug.

  9. Cubic crystal system - Wikipedia

    en.wikipedia.org/wiki/Cubic_crystal_system

    A network model of a primitive cubic system The primitive and cubic close-packed (also known as face-centered cubic) unit cells. In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.