Search results
Results from the WOW.Com Content Network
Every normed vector space can be "uniquely extended" to a Banach space, which makes normed spaces intimately related to Banach spaces. Every Banach space is a normed space but converse is not true. For example, the set of the finite sequences of real numbers can be normed with the Euclidean norm , but it is not complete for this norm.
The dual norm is a special case of the operator norm defined for each (bounded) linear map between normed vector spaces. Since the ground field of X {\displaystyle X} ( R {\displaystyle \mathbb {R} } or C {\displaystyle \mathbb {C} } ) is complete , X ∗ {\displaystyle X^{*}} is a Banach space .
A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". [1]
Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.
Pages in category "Normed spaces" The following 17 pages are in this category, out of 17 total. ... Normed vector space; C. C space; Cocompact embedding; F. Fichera's ...
Vectors in a Euclidean space form a linear space, but each vector has also a length, in other words, norm, ‖ ‖. A real or complex linear space endowed with a norm is a normed space. Every normed space is both a linear topological space and a metric space. A Banach space is a complete normed space. Many spaces of sequences or functions are ...
When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.
The Lebesgue space. The normed vector space ((,), ‖ ‖) is called space or the Lebesgue space of -th power integrable functions and it is a Banach space for every (meaning that it is a complete metric space, a result that is sometimes called the Riesz–Fischer theorem).