enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantification (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Quantification_(machine...

    In machine learning and data mining, quantification (variously called learning to quantify, or supervised prevalence estimation, or class prior estimation) is the task of using supervised learning in order to train models (quantifiers) that estimate the relative frequencies (also known as prevalence values) of the classes of interest in a sample of unlabelled data items.

  3. Taylor diagram - Wikipedia

    en.wikipedia.org/wiki/Taylor_diagram

    One of the main limitation of the Taylor diagram is the absence of explicit information about model biases. One approach suggested by Taylor (2001) was to add lines, whose length is equal to the bias to each data point. An alternative approach, originally described by Elvidge et al., 2014 [17], is to show the bias of the models via a color ...

  4. Approximate entropy - Wikipedia

    en.wikipedia.org/wiki/Approximate_entropy

    Lower computational demand. ApEn can be designed to work for small data samples (< points) and can be applied in real time. Less effect from noise. If data is noisy, the ApEn measure can be compared to the noise level in the data to determine what quality of true information may be present in the data.

  5. Sample entropy - Wikipedia

    en.wikipedia.org/wiki/Sample_entropy

    Like approximate entropy (ApEn), Sample entropy (SampEn) is a measure of complexity. [1] But it does not include self-similar patterns as ApEn does. For a given embedding dimension, tolerance and number of data points, SampEn is the negative natural logarithm of the probability that if two sets of simultaneous data points of length have distance < then two sets of simultaneous data points of ...

  6. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    For example, a logarithm of base 2 8 = 256 will produce a measurement in bytes per symbol, and a logarithm of base 10 will produce a measurement in decimal digits (or hartleys) per symbol. Intuitively, the entropy H X of a discrete random variable X is a measure of the amount of uncertainty associated with the value of X when only its ...

  7. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Data about cybersecurity strategies from more than 75 countries. Tokenization, meaningless-frequent words removal. [366] Yanlin Chen, Yunjian Wei, Yifan Yu, Wen Xue, Xianya Qin APT Reports collection Sample of APT reports, malware, technology, and intelligence collection Raw and tokenize data available. All data is available in this GitHub ...

  8. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a data set. [1] Choosing informative, discriminating, and independent features is crucial to produce effective algorithms for pattern recognition, classification, and regression tasks.

  9. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    Other examples are regression, which assigns a real-valued output to each input; sequence labeling, which assigns a class to each member of a sequence of values (for example, part of speech tagging, which assigns a part of speech to each word in an input sentence); parsing, which assigns a parse tree to an input sentence, describing the ...