Search results
Results from the WOW.Com Content Network
The damping ratio provides a mathematical means of expressing the level of damping in a system relative to critical damping. For a damped harmonic oscillator with mass m, damping coefficient c, and spring constant k, it can be defined as the ratio of the damping coefficient in the system's differential equation to the critical damping coefficient:
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
Pierce [4] undertook an analysis of the effects of amplifier damping factor on the decay time and frequency-dependent response variations of a closed-box, acoustic suspension loudspeaker system. The results indicated that any damping factor over 10 is going to result in inaudible differences between that and a damping factor equal to infinity.
In the filtering application, the resistor becomes the load that the filter is working into. The value of the damping factor is chosen based on the desired bandwidth of the filter. For a wider bandwidth, a larger value of the damping factor is required (and vice versa). The three components give the designer three degrees of freedom.
For a single damped mass-spring system, the Q factor represents the effect of simplified viscous damping or drag, where the damping force or drag force is proportional to velocity. The formula for the Q factor is: Q = M k D , {\displaystyle Q={\frac {\sqrt {Mk}}{D}},\,} where M is the mass, k is the spring constant, and D is the damping ...
In physical systems, damping is the loss of energy of an oscillating system by dissipation. [1] In the field of micro-electro-mechanicals, the damping is usually measured by a dimensionless parameter Q factor (Quality factor). A higher Q factor indicates lower damping and reduced energy dissipation, which is desirable for micro-resonators as it ...
It is a modified version by Gilbert of the original equation of Landau and Lifshitz. [1] The LLG equation is similar to the Bloch equation, but they differ in the form of the damping term. The LLG equation describes a more general scenario of magnetization dynamics beyond the simple Larmor precession.
Classic model used for deriving the equations of a mass spring damper model. The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers.