Search results
Results from the WOW.Com Content Network
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Exploratory data analysis is an analysis technique to analyze and investigate the data set and summarize the main characteristics of the dataset. Main advantage of EDA is providing the data visualization of data after conducting the analysis.
Accurate analysis of data using standardized statistical methods in scientific studies is critical to determining the validity of empirical research. Statistical formulas such as regression, uncertainty coefficient, t-test, chi square, and various types of ANOVA (analyses of variance) are fundamental to forming logical, valid conclusions.
Choosing a research question is an essential element of both quantitative and qualitative research. Investigation will require data collection and analysis, and the methodology for this will vary widely. Good research questions seek to improve knowledge on an important topic, and are usually narrow and specific. [1]
In an IPD meta-analysis, patient-level data from multiple studies or settings are combined to address a certain research question. IPD meta-analyses tend to be common for large-scale and international projects, and they are less limited than aggregate data (AD) meta-analyses in terms of the availability and quality of data they can use. [2]
Quantitative research using statistical methods starts with the collection of data, based on the hypothesis or theory. Usually a big sample of data is collected – this would require verification, validation and recording before the analysis can take place. Software packages such as SPSS and R are typically used for this purpose. Causal ...
Panel (data) analysis is a statistical method, widely used in social science, epidemiology, and econometrics to analyze two-dimensional (typically cross sectional and longitudinal) panel data. [1] The data are usually collected over time and over the same individuals and then a regression is run over these two dimensions.
For example, bibliographic coupling and co-citation are association measures based on citation analysis (shared citations or shared references). The citations in a collection of documents can also be represented in forms such as a citation graph, as pointed out by Derek J. de Solla Price in his 1965 article "Networks of Scientific Papers". [4]