enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    In 1946, Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks [11] et al.) by analogy with the then-prevalent common logarithm tables: the characteristic is the integer part of the logarithm (i.e. the exponent), and the mantissa is the fractional part.

  3. Comparison of data-serialization formats - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_data...

    binary real values are represented in a binary format that includes the mantissa, the base (2, 8, or 16), and the exponent; the special values NaN, -INF, +INF , and negative zero are also supported Multiple valid types ( VisibleString, PrintableString, GeneralString, UniversalString, UTF8String )

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The arithmetical difference between two consecutive representable floating-point numbers which have the same exponent is called a unit in the last place (ULP). For example, if there is no representable number lying between the representable numbers 1.45a70c22 hex and 1.45a70c24 hex , the ULP is 2×16 −8 , or 2 −31 .

  5. Fractional part - Wikipedia

    en.wikipedia.org/wiki/Fractional_part

    Then, the fractional part can be formulated as a difference: frac ⁡ ( x ) = x − ⌊ x ⌋ , x > 0 {\displaystyle \operatorname {frac} (x)=x-\lfloor x\rfloor ,\;x>0} . The fractional part of logarithms , [ 2 ] specifically, is also known as the mantissa ; by contrast with the mantissa, the integral part of a logarithm is called its ...

  6. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    The part of the representation that contains the significant figures (1.30 or 1.23) is known as the significand or mantissa. The digits in the base and exponent ( 10 3 or 10 −2 ) are considered exact numbers so for these digits, significant figures are irrelevant.

  7. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in ordinary decimal notation.

  8. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    In single precision, the bias is 127, so in this example the biased exponent is 124; in double precision, the bias is 1023, so the biased exponent in this example is 1020. fraction = .01000… 2 . IEEE 754 adds a bias to the exponent so that numbers can in many cases be compared conveniently by the same hardware that compares signed 2's ...

  9. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.