Search results
Results from the WOW.Com Content Network
The term inductance was coined by Oliver Heaviside in May 1884, as a convenient way to refer to "coefficient of self-induction". [ 2 ] [ 3 ] It is customary to use the symbol L {\displaystyle L} for inductance, in honour of the physicist Heinrich Lenz .
the inductance of a solenoid follows as =. A table of inductance for short solenoids of various diameter to length ratios has been calculated by Dellinger, Whittmore, and Ould. [18] This, and the inductance of more complicated shapes, can be derived from Maxwell's equations. For rigid air-core coils, inductance is a function of coil geometry ...
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). [1] If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self-inductance of 1 henry. The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same ...
The internal component of a round wire's inductance vs. the ratio of skin depth to radius. That component of the self inductance is reduced below μ/8 π as skin depth becomes small (as frequency increases). The ratio AC resistance to DC resistance of a round wire versus the ratio of the wire's radius to the skin depth.
Let be the solenoid constructed this way, then the topology of the solenoid is just the subset topology induced by the Euclidean topology on . Since the parametrization is bijective, we can pullback the topology on S {\displaystyle S} to R {\displaystyle \mathbb {R} } , which makes R {\displaystyle \mathbb {R} } itself the solenoid.
Thus, for a typical inductance (a coil of conducting wire), the flux linkage is equivalent to magnetic flux, which is the total magnetic field passing through the surface (i.e., normal to that surface) formed by a closed conducting loop coil and is determined by the number of turns in the coil and the magnetic field, i.e.,