enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  3. Cluster-randomised controlled trial - Wikipedia

    en.wikipedia.org/wiki/Cluster-randomised...

    Cluster randomised controlled trials are also known as cluster-randomised trials, [2] group-randomised trials, [3] [4] and place-randomized trials. [5] Cluster-randomised controlled trials are used when there is a strong reason for randomising treatment and control groups over randomising participants. [6]

  4. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]

  5. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...

  7. Cluster sampling - Wikipedia

    en.wikipedia.org/wiki/Cluster_sampling

    An example of cluster sampling is area sampling or geographical cluster sampling.Each cluster is a geographical area in an area sampling frame.Because a geographically dispersed population can be expensive to survey, greater economy than simple random sampling can be achieved by grouping several respondents within a local area into a cluster.

  8. Today’s NYT ‘Strands’ Hints, Spangram and Answers for ...

    www.aol.com/today-nyt-strands-hints-spangram...

    According to the New York Times, here's exactly how to play Strands: Find theme words to fill the board. Theme words stay highlighted in blue when found.

  9. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri