Search results
Results from the WOW.Com Content Network
The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System (as well as other planetary systems). It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets.
While the broad picture of the nebular hypothesis is widely accepted, [33] many of the details are not well understood and continue to be refined. The refined nebular model was developed entirely on observations of the Solar System because it was the only one known until the mid-1990s.
The nebular hypothesis says that the Solar System formed from the gravitational collapse of a fragment of a giant molecular cloud, [9] most likely at the edge of a Wolf-Rayet bubble. [10] The cloud was about 20 parsecs (65 light years) across, [ 9 ] while the fragments were roughly 1 parsec (three and a quarter light-years ) across. [ 11 ]
In cosmogony, the nebular hypothesis is the most widely accepted model explaining the formation and evolution of the Solar System. It was first proposed in 1734 by Emanuel Swedenborg. Originally applied only to our own Solar System, this method of planetary system formation is now thought to be at work throughout the universe.
The nebular hypothesis of solar system formation describes how protoplanetary disks are thought to evolve into planetary systems. Electrostatic and gravitational interactions may cause the dust and ice grains in the disk to accrete into planetesimals .
As mentioned, the idea of the nebular hypothesis had been outlined by Immanuel Kant in 1755, [58] who had also suggested "meteoric aggregations" and tidal friction as causes affecting the formation of the Solar System. Laplace was probably aware of this, but, like many writers of his time, he generally did not reference the work of others.
Kant proposes the nebular hypothesis, in which solar systems are the result of nebulae (interstellar clouds of dust) coalescing into accretion disks and then forming suns and their planets. [4] He also discusses comets, and postulates that the Milky Way is only one of many galaxies. [1]
The Solar System remains in a relatively stable, slowly evolving state by following isolated, gravitationally bound orbits around the Sun. [28] Although the Solar System has been fairly stable for billions of years, it is technically chaotic, and may eventually be disrupted. There is a small chance that another star will pass through the Solar ...