Search results
Results from the WOW.Com Content Network
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage.
The highest (maximum) value of the photo-current is called saturation current. The value of retarding potential at which photo-current becomes zero is called cut-off voltage or stopping potential for the given frequency of the incident ray.
When no current is observed through the tube, the negative voltage has reached the value that is high enough to slow down and stop the most energetic photoelectrons of kinetic energy K max. This value of the retarding voltage is called the stopping potential or cut off potential V o . [ 13 ]
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
In semiconductor physics, the depletion region, also called depletion layer, depletion zone, junction region, space charge region, or space charge layer, is an insulating region within a conductive, doped semiconductor material where the mobile charge carriers have diffused away, or been forced away by an electric field.
As an application example, the steady-state space-charge-limited current across a piece of intrinsic silicon with a charge-carrier mobility of 1500 cm 2 /V-s, a relative dielectric constant of 11.9, an area of 10 −8 cm 2 and a thickness of 10 −4 cm can be calculated by an online calculator to be 126.4 μA at 3 V. Note that in order for this ...
As for the second, the difference between the quasi-Fermi levels at the junction, he says that we can estimate the current flowing through the diode from this difference. He points out that the current at the p terminal is all holes, whereas at the n terminal it is all electrons, and the sum of these two is the constant total current.
For a surface biased strongly negative so that it draws the ion saturation current, the approximation is very good. It is customary, although not strictly necessary, to further simplify the equation by assuming that 2 χ / M 2 {\displaystyle 2\chi /{\mathfrak {M}}^{2}} is much larger than unity.