Search results
Results from the WOW.Com Content Network
Hypochlorite salts formed by the reaction between chlorine and alkali and alkaline earth metal hydroxides. The reaction is performed at close to room temperature to suppress the formation of chlorates. This process is widely used for the industrial production of sodium hypochlorite (NaClO) and calcium hypochlorite (Ca(ClO) 2).
From water solutions of barium chloride, its dihydrate (BaCl 2 ·2H 2 O) can be crystallized as colorless crystals. [2] Barium chloride can in principle be prepared by the reaction between barium hydroxide or barium carbonate with hydrogen chloride. These basic salts react with hydrochloric acid to give hydrated barium chloride.
The color of the flames also generally depends on temperature and oxygen fed; see flame colors. [5] The procedure uses different solvents and flames to view the test flame through a cobalt blue glass or didymium glass to filter the interfering light of contaminants such as sodium. [12] Flame tests are subject of a number of limitations.
Barium sulfate (or sulphate) is the inorganic compound with the chemical formula Ba SO 4. It is a white crystalline solid that is odorless and insoluble in water. It occurs in nature as the mineral barite, which is the main commercial source of barium and materials prepared from it. Its opaque white appearance and its high density are exploited ...
An alternative decomposition of hypochlorite produces oxygen instead: 2 OCl − → 2 Cl − + O 2. In hot sodium hypochlorite solutions, this reaction competes with chlorate formation, yielding sodium chloride and oxygen gas: [25] 2 NaOCl(aq) → 2 NaCl(aq) + O 2 (g) These two decomposition reactions of NaOCl solutions are maximized at pH ...
Sodium sulfate is a typical electrostatically bonded ionic sulfate. The existence of free sulfate ions in solution is indicated by the easy formation of insoluble sulfates when these solutions are treated with Ba 2+ or Pb 2+ salts: Na 2 SO 4 + BaCl 2 → 2 NaCl + BaSO 4. Sodium sulfate is unreactive toward most oxidizing or reducing agents.
The barium derivative is useful in the gravimetric analysis of sulfate: if one adds a solution of most barium salts, for instance barium chloride, to a solution containing sulfate ions, barium sulfate will precipitate out of solution as a whitish powder. This is a common laboratory test to determine if sulfate anions are present.
For example, among sodium (Na), chromium (Cr), cuprous (Cu +) and chloride (Cl −), it is Na that is the strongest reducing agent while Cl − is the weakest; said differently, Na + is the weakest oxidizing agent in this list while Cl is the strongest.