Search results
Results from the WOW.Com Content Network
In order for the solution method to work, as in linear equations, it is necessary to express every term in the nonlinear equation as a power series so that all of the terms may be combined into one power series. As an example, consider the initial value problem ″ + ′ + ′ =; = , ′ = which describes a solution to capillary-driven flow in ...
The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...
Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.
The solution () / has a power series starting with the power zero. In a power series starting with the recurrence relation places no restriction on the coefficient for the term , which can be set arbitrarily. If it is set to zero then with this differential equation all the other coefficients will be zero and we obtain the solution 1/z.
Chebyshev's equation is the second order linear differential equation + = where p is a real (or complex) constant. The equation is named after Russian mathematician Pafnuty Chebyshev. The solutions can be obtained by power series:
The corresponding scalar Cauchy problem involving this function instead of the A i 's and b has an explicit local analytic solution. The absolute values of its coefficients majorize the norms of those of the original problem; so the formal power series solution must converge where the scalar solution converges.
In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy, [1] but remained relatively unknown until Hadamard rediscovered it. [2]
It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!