enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    For multiple traits, using the "forked-line method" is typically much easier than the Punnett square. Phenotypes may be predicted with at least better-than-chance accuracy using a Punnett square, but the phenotype that may appear in the presence of a given genotype can in some instances be influenced by many other factors, as when polygenic ...

  3. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    Each has one allele for purple and one allele for white. In the offspring, in the F 2-plants in the Punnett-square, three combinations are possible. The genotypic ratio is 1 BB : 2 Bb : 1 bb. But the phenotypic ratio of plants with purple blossoms to those with white blossoms is 3 : 1 due to the dominance of the allele for purple.

  4. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    The traits observed in this cross are the same traits that Mendel was observing for his experiments. This cross results in the expected phenotypic ratio of 9:3:3:1. Another example is listed in the table below and illustrates the process of a dihybrid cross between pea plants with multiple traits and their phenotypic ratio patterns.

  5. Mendelian traits in humans - Wikipedia

    en.wikipedia.org/wiki/Mendelian_traits_in_humans

    Autosomal dominant A 50/50 chance of inheritance. Sickle-cell disease is inherited in the autosomal recessive pattern. When both parents have sickle-cell trait (carrier), a child has a 25% chance of sickle-cell disease (red icon), 25% do not carry any sickle-cell alleles (blue icon), and 50% have the heterozygous (carrier) condition. [1]

  6. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    The predictions of the combinations of the gametes will be constructed on a Punnett square. [citation needed] In conducting a monohybrid cross, Mendel initiated the experiment with a pair of pea plants exhibiting contrasting traits, one being tall and the other dwarf. Through cross-pollination, the resulting offspring plants manifested the tall ...

  7. Hereditary carrier - Wikipedia

    en.wikipedia.org/wiki/Hereditary_carrier

    Punnett square: If the other parent does not have the recessive genetic disposition, it does not appear in the phenotype of the children, but on the average 50% of them become carriers. A hereditary carrier ( genetic carrier or just carrier ), is a person or other organism that has inherited a recessive allele for a genetic trait or mutation ...

  8. Phenotype - Wikipedia

    en.wikipedia.org/wiki/Phenotype

    Here the relation between genotype and phenotype is illustrated, using a Punnett square, for the character of petal color in pea plants. The letters B and b represent genes for color, and the pictures show the resultant phenotypes. This shows how multiple genotypes (BB and Bb) may yield the same phenotype (purple petals).

  9. Genotype frequency - Wikipedia

    en.wikipedia.org/wiki/Genotype_frequency

    A Punnett square visualizing the genotype frequencies of a Hardy–Weinberg equilibrium as areas of a square. p (A) and q (a) are the allele frequencies . Genetic variation in populations can be analyzed and quantified by the frequency of alleles .