Ads
related to: convex and concave polygons worksheetsThis site is a teacher's paradise! - The Bender Bunch
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Lesson Plans
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
An example of a concave polygon. A simple polygon that is not convex is called concave, [1] non-convex [2] or reentrant. [3] A concave polygon will always have at least one reflex interior angle—that is, an angle with a measure that is between 180 degrees and 360 degrees exclusive. [4]
The polygon is the convex hull of its edges. Additional properties of convex polygons include: The intersection of two convex polygons is a convex polygon. A convex polygon may be triangulated in linear time through a fan triangulation, consisting in adding diagonals from one vertex to all other vertices.
A point-set triangulation is a polygon triangulation of the convex hull of a set of points. A Delaunay triangulation is another way to create a triangulation based on a set of points. The associahedron is a polytope whose vertices correspond to the triangulations of a convex polygon. Polygon triangle covering, in which the triangles may overlap.
All convex polygons are simple. Concave: Non-convex and simple. There is at least one interior angle greater than 180°. Star-shaped: the whole interior is visible from at least one point, without crossing any edge. The polygon must be simple, and may be convex or concave. All convex polygons are star-shaped. Self-intersecting: the boundary of ...
All convex polygons, but not all polygons, can be fan triangulated. Polygons with only one concave vertex can always be fan triangulated, as long as the diagonals are drawn from the concave vertex. It can be known if a polygon can be fan triangulated by solving the Art gallery problem , in order to determine whether there is at least one vertex ...
Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.
For convex polygons one can cut off each vertex in turn, while for concave polygons this requires more care. A general approach that works for non-simple polygons as well would be to choose a line not parallel to any of the sides of the polygon and draw a line parallel to this one through each of the vertices of the polygon.
A set that is not convex is called a non-convex set. A polygon that is not a convex polygon is sometimes called a concave polygon, [4] and some sources more generally use the term concave set to mean a non-convex set, [5] but most authorities prohibit this usage. [6] [7]
Ads
related to: convex and concave polygons worksheetsThis site is a teacher's paradise! - The Bender Bunch
kutasoftware.com has been visited by 10K+ users in the past month