enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Internal validity - Wikipedia

    en.wikipedia.org/wiki/Internal_validity

    Internal validity, therefore, is more a matter of degree than of either-or, and that is exactly why research designs other than true experiments may also yield results with a high degree of internal validity. In order to allow for inferences with a high degree of internal validity, precautions may be taken during the design of the study.

  3. Validity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Validity_(statistics)

    If the goal of a study is to deductively test a theory, one is only concerned with factors which might undermine the rigor of the study, i.e. threats to internal validity. In other words, the relevance of external and internal validity to a research study depends on the goals of the study.

  4. Observer-expectancy effect - Wikipedia

    en.wikipedia.org/wiki/Observer-expectancy_effect

    It is a significant threat to a study's internal validity, and is therefore typically controlled using a double-blind experimental design. It may include conscious or unconscious influences on subject behavior including creation of demand characteristics that influence subjects, and altered or selective recording of experimental results themselves.

  5. Statistical conclusion validity - Wikipedia

    en.wikipedia.org/.../Statistical_conclusion_validity

    Statistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or "reasonable". This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to "reasonable" conclusions that use: quantitative, statistical, and ...

  6. Confounding - Wikipedia

    en.wikipedia.org/wiki/Confounding

    The major threats to internal validity are history, maturation, testing, instrumentation, statistical regression, selection, experimental mortality, and selection-history interactions. One way to minimize the influence of artifacts is to use a pretest-posttest control group design.

  7. Quasi-experiment - Wikipedia

    en.wikipedia.org/wiki/Quasi-experiment

    The lack of random assignment in the quasi-experimental design method may allow studies to be more feasible, but this also poses many challenges for the investigator in terms of internal validity. This deficiency in randomization makes it harder to rule out confounding variables and introduces new threats to internal validity. [11]

  8. Selection bias - Wikipedia

    en.wikipedia.org/wiki/Selection_bias

    A distinction of sampling bias (albeit not a universally accepted one) is that it undermines the external validity of a test (the ability of its results to be generalized to the rest of the population), while selection bias mainly addresses internal validity for differences or similarities found in the sample at hand. In this sense, errors ...

  9. Impact evaluation - Wikipedia

    en.wikipedia.org/wiki/Impact_evaluation

    Natural experiments leverage events outside the researchers' and subjects' control to address several threats to internal validity, minimising the chance of confounding elements, while sacrificing a few of the features of field data, such as more natural ranges of treatment effects and the presence of organically formed context. [16]