Search results
Results from the WOW.Com Content Network
Internal validity, therefore, is more a matter of degree than of either-or, and that is exactly why research designs other than true experiments may also yield results with a high degree of internal validity. In order to allow for inferences with a high degree of internal validity, precautions may be taken during the design of the study.
If the goal of a study is to deductively test a theory, one is only concerned with factors which might undermine the rigor of the study, i.e. threats to internal validity. In other words, the relevance of external and internal validity to a research study depends on the goals of the study.
It is a significant threat to a study's internal validity, and is therefore typically controlled using a double-blind experimental design. It may include conscious or unconscious influences on subject behavior including creation of demand characteristics that influence subjects, and altered or selective recording of experimental results themselves.
Statistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or "reasonable". This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to "reasonable" conclusions that use: quantitative, statistical, and ...
The major threats to internal validity are history, maturation, testing, instrumentation, statistical regression, selection, experimental mortality, and selection-history interactions. One way to minimize the influence of artifacts is to use a pretest-posttest control group design.
The lack of random assignment in the quasi-experimental design method may allow studies to be more feasible, but this also poses many challenges for the investigator in terms of internal validity. This deficiency in randomization makes it harder to rule out confounding variables and introduces new threats to internal validity. [11]
A distinction of sampling bias (albeit not a universally accepted one) is that it undermines the external validity of a test (the ability of its results to be generalized to the rest of the population), while selection bias mainly addresses internal validity for differences or similarities found in the sample at hand. In this sense, errors ...
Natural experiments leverage events outside the researchers' and subjects' control to address several threats to internal validity, minimising the chance of confounding elements, while sacrificing a few of the features of field data, such as more natural ranges of treatment effects and the presence of organically formed context. [16]