Search results
Results from the WOW.Com Content Network
The ligase chain reaction (LCR) is a method of DNA amplification. The ligase chain reaction (LCR) is an amplification process that differs from polymerase chain reaction (PCR) in that it involves a thermostable ligase to join two probes or other molecules together which can then be amplified by standard PCR cycling. [ 1 ]
Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide sequence which will adopt a given structure under certain environmental conditions?
LCR-eXXXplorer offers tools for displaying LCRs from the UniProt/SwissProt knowledgebase, in combination with other relevant protein features, predicted or experimentally verified. Also, users may perform queries against a custom designed sequence/LCR-centric database.
The response factor can be expressed on a molar, volume or mass [1] basis. Where the true amount of sample and standard are equal: = where A is the signal (e.g. peak area) and the subscript i indicates the sample and the subscript st indicates the standard. [2]
Mulliken charges arise from the Mulliken population analysis [1] [2] and provide a means of estimating partial atomic charges from calculations carried out by the methods of computational chemistry, particularly those based on the linear combination of atomic orbitals molecular orbital method, and are routinely used as variables in linear regression (QSAR [3]) procedures. [4]
The common practice of most members of WikiProject mathematics is the following: Use of {{ mvar }} and {{ math }} for isolated variables and {{ math }} for simple inline formulas; or alternately the use of LaTeX for these purposes (optionally using the {{ tmath }} template), especially on articles with many complex formulas or where rendering ...
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
The cation transport number of the leading solution is then calculated as t + = z + c L A F I Δ t {\displaystyle t_{+}={\frac {z_{+}cLAF}{I\Delta t}}} where z + {\displaystyle z_{+}} is the cation charge, c the concentration, L the distance moved by the boundary in time Δ t , A the cross-sectional area, F the Faraday constant , and I the ...