Search results
Results from the WOW.Com Content Network
Stellar evolution is the process by which a star changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the ...
العربية; Azərbaycanca; تۆرکجه; বাংলা; Беларуская; Беларуская (тарашкевіца) Bosanski; Чӑвашла
During a star's evolution, convective mixing episodes moves material, within which the CNO cycle has operated, from the star's interior to the surface, altering the observed composition of the star. Red giant stars are observed to have lower carbon-12/carbon-13 and carbon-12/nitrogen-14 ratios than do main sequence stars, which is considered to ...
The motion of a star relative to the Sun can provide useful information about the origin and age of a star, as well as the structure and evolution of the surrounding galaxy. [143] The components of motion of a star consist of the radial velocity toward or away from the Sun, and the traverse angular movement, which is called its proper motion. [144]
A protostar is a very young star that is still gathering mass from its parent molecular cloud.It is the earliest phase in the process of stellar evolution. [1] For a low-mass star (i.e. that of the Sun or lower), it lasts about 500,000 years. [2]
The W51 nebula in Aquila - one of the largest star factories in the Milky Way (August 25, 2020). Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. [1]
However, the current rate of galaxy mergers does not explain how all galaxies move from the "blue cloud" to the "red sequence". It also does not explain how star formation ceases in galaxies. Theories of galaxy evolution must therefore be able to explain how star formation turns off in galaxies. This phenomenon is called galaxy "quenching". [16]
A star's life begins with the gravitational collapse of a gaseous nebula of material largely comprising hydrogen, helium, and trace heavier elements. Its total mass mainly determines its evolution and eventual fate. A star shines for most of its active life due to the thermonuclear fusion of hydrogen into helium in its core.