enow.com Web Search

  1. Ad

    related to: second derivative test calculator multivariable algebra 3

Search results

  1. Results from the WOW.Com Content Network
  2. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    Thus, the second partial derivative test indicates that f(x, y) has saddle points at (0, −1) and (1, −1) and has a local maximum at (,) since = <. At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point.

  3. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    The higher-order derivative test or general derivative test is able to determine whether a function's critical points are maxima, minima, or points of inflection for a wider variety of functions than the second-order derivative test. As shown below, the second-derivative test is mathematically identical to the special case of n = 1 in the ...

  4. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The second-derivative test for functions of one and two variables is simpler than the general case. In one variable, the Hessian contains exactly one second derivative; if it is positive, then x {\displaystyle x} is a local minimum, and if it is negative, then x {\displaystyle x} is a local maximum; if it is zero, then the test is inconclusive.

  5. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    When viewed as a distribution the second partial derivative's values can be changed at an arbitrary set of points as long as this has Lebesgue measure 0. Since in the example the Hessian is symmetric everywhere except (0, 0), there is no contradiction with the fact that the Hessian, viewed as a Schwartz distribution, is symmetric.

  6. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    (For example, f(x) = x 3 has a critical point at x = 0, but it has neither a maximum nor a minimum there, whereas f(x) = ± x 4 has a critical point at x = 0 and a minimum and a maximum, respectively, there.) This is called the second derivative test.

  7. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  8. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .

  9. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Conversely, if the derivative of f at a point is zero (is a stationary point), one cannot in general conclude anything about the local behavior of f – it may increase to one side and decrease to the other (as in ), increase to both sides (as in ), decrease to both sides (as in ), or behave in more complicated ways, such as oscillating (as in ...

  1. Ad

    related to: second derivative test calculator multivariable algebra 3